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ABSTRACT

"A new penalty function is associated with an inequality constrained

nonlinear programming problem via its dual. This penalty function is

globally differentiable if the functions defining the original problem are

twice globally differentiable. In addition, the penalty parameter remains

finite. This approach reduces the original problem to a simple problem

of maximizing a globally differentiable function on the product space of

a Euclidean space and the nonnegative orthant of another Euclidean space.

Many efficient algorithms exist for solving this problem. For the case

of quadratic programming, the penalty function problem can be solved

effectively by successive overrelaxation (SOR) methods which can handle

huge problems while preserving sparsity features.
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SIGNIFICANCE AND EXPLANATION

The problem of minimizing a function of several variables

subject to inequality constraints is reduced to the problem of

maximizing a smooth function subject to nonnegativity constraints.

The latter problem can be easily solved by many known efficient

* (methods. Very large quadratic problems can be solved by using

successive over-relaxation methods which will preserve any sparsity

the original problem may have.
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A DUAL DIFFERENTIABLE EXACT PENALTY FUNCTION

S. -P. Han and 0. L. Mangasarian

1. Introduction

It is well known that exterior penalty functions [6,13] in mathe-

matical programming suffer from one of two difficulties. Either the

Hessian of the penalty function becomes ill-conditioned as the penalty

parameter approaches infinity [6,20], or the penalty function is

nondifferentiable [13]. There have been, however, attempts at obtaining

penalty functions which are both differentiable and for which the

penalty parameter remains finite [8,3,4,1]. We present here a different

and an extremely simple penalty function which, by taking advantage of

the structure of the dual problem, results in a penalty function which

is differentiable and for which the penalty parameter remains finite.

The key idea behind the present approach is extremely simple and is best

illustrated by the following equality-constrained minimization problem

minimize f(x) subject to h(x) = 0
xeRn

where f and h are differentiable functions from the n-dimensional
real Euclidean space R" into R and Rk respectively. The classical

exterior penalty problem for this problem is

minimize f(x) + OILh(x)II2

xeRn

where a is a positive penalty parameter and II"11 denotes the 2-norm.

At stationary points of the penalty problem we have

Vf(x) + aVh(x)Th(x) = 0

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based upon work supported by the National Science
Foundation under Grants No. MCS-790166 and ENG-7903881.
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where Vf(x) is the nxl gradient of f, Vh(x) is the kxn Jacobian

of h and the superscript T denotes the transpose. In order for this

condition to approach the stationarity conditions for the minimization

problem, which are

Vf(x) + Vh(x) u =0 , h(x) - 0

where u is an kxl vector of Lagrange multipliers, the quantity

ah(x) must approach u. Since h(x) = 0, it turns out that in general

a must approach -. There are exceptions. For example if u = 0

then a need not approach m. This is an exceptional case which

does not hold in general for the original minimization problem.

However, if we consider the Wolfe dual [22,15] to an inequality

constrained minimization problem, then the optimal Lagrange multiplier

associated with the equality constraint of the dual is zero provided that

the Hessian of the Lagrangian is nonsingular at the optimum. Hence for

the exterior penalty problem associated with Wolfe dual we can show

(Theorems 1 to 4) that under rather natural conditions the penalty

parameter remains finite. Hence we can obtain a globally differentiable

penalty function with a finite penalty parameter. Because our penalty

problem formulation depends in an essential manner on the dual problem,

our results are local results in the absence of convexity, and become

global results if convexity is assumed. Because our penalty function is

smooth and its parameter is finite it has important computational

implications. For example, fast methods of smooth optimization could be

used to directly optimize the differentiable penplty function (Algorithm 1),

or the function may be used as in [12] in enlarging the convergence region
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of fast-but locally convergent algorithms [9,11]. In addition, for

positive definite quadratic programming problems, our penalty function

can be used to derive a successive overrelaxation (SOR) algorithm

without the need to invert the underlying positive definite matrix of

the problem (Algorithm 2). SOR algorithms have proved to be successful

in solving linear programming problems [17] and have the potential for

solving enormous problems that cannot be tackled by pivotal methods

while at the same time preserving the sparsity of the problem.

Besides this Introduction, this paper contains two sections. In

Section 2 we treat the general nonlinear programming problem while in

Section 2 we specialize to the quadratic programming case to obtain

sharper results. Section 1 contains theorems relating stationary points,

local and global optima of the nonlinear inequality constrained problem

to those of the penalty problem. We also give a simple gradient projec-

tion algorithm for optimizing the penalty function. In Section 3 we

have similar results for the quadratic programming case. We also present

an SOR method for quadratic programming which is a generalization of the

SOR method used with successful computational results on linear

programing [17].

We briefly describe our notation. All vectors in Rn will be

column vectors unless transposed to a row vector by the superscript T.

R+ will denote the nonnegative orthant (xtxlRn, xO}. For x in Rn

xi, =l,...,n, will denote its ith component, while x+ will denote a

vector in Rn with components (x+)t - max {xt,O1, l=l,...,n and fixit

will denote the Euclidean norm (x Tx) . For an mxn real matrix A, At

IAl
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will denote the ith row, A.j the jth column, and if Ic{1,...,m},

Jc{1,...,n) then A, will denote the submatrix with rows AV 1  el, A

will denote the submatrix with columns A.J, JeJ, and Al, will denote

the submatrix with elements Atj, eId and jeJ. For a differentiable

function f:Rn-*R, Vf(x) will denote the nxl gradient vector, while

for a differentiable function g:Rn-. Rm, Vg(x) will denote the mxn

Jacobian matrix. For a twice differentiable function L:Rn xRm'R,

VxL(x,u) will denote the nxl gradient with respect to x, VUL(X,U)

will denote mxl gradient with respect to u, V2L(x,u) will denote

(n+m) x (n+m) Hessian with respect to both x and u whose submatrix

components are denoted as follows

V xxL(xu) V xuL(x'ul

LUXL(XU) V L(x

For a nonlinear programming problem such as (1) below, a point
,- n+m

Rn.Il satisfying the Karush-Kuhn-Tucker conditions (1') is said

to be a KKT point, while i is said to be a stationary point of (1).

Whenever a point (ia) is a KKT point, the differentiability of f

and g at R is implicitly assumed.

-- m
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2. The General Nonlinear Programing Problem

We consider here the problem

minimize f(x) subject to g(x) 0 (1)

xcRn

where f is a function from the n-dimensional real Euclidean space Rn

into the reals and g is from Rn into Rm. Associated with this

problem is the Wolfe dual [22,15]

maximize L(x,u) subject to V L(x,u) = 0, u > 0

(x,u)hRn+m (2)

where L(x,u):= f(x) + uTg(x)

Our penalty function is derived from (2) by constructing an exterior

penalty function for the equality constrain'- only. Thus we define the

penalty function

e(xu,y):= L(xu) - IIVXL(x,u)i 2  (3)

and consider the penalty problem

maximize e(x,uy) (4)
, (X,U).ER nlm

which is differentiable on Rn+m when f and g are differentiable on

Rn. We shall relate various stationary and solution points of problems

(1), (2) and (4). We begin with a simple but useful result.

S.
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4 Theorem 1 (Equivalence of stationary points of (1), (2) and (4))

Let f and g be twice continuously differentiable at i. Then

(a) x~)is a stationar x~)is a stationar

p oint of (2) and a*i)i aK point of (4) for

exists point of (1)an y

(b) is a stationary

(ii)is a stationary is a K)KT point of (4), Y 0 0

point of (2) point of (1) and 1-is not an
Y

igenvalue of V XL(i,ai

Proof

The proof follows directly by writing the Karush-Kuhn-Tucker conditions

[15)]1) (2') and (4f) for problems (1), (2) and (4) respectively as follows

V L(i) =0, g(R) 10, jTg(R) = 0, >o (10
x

For some R

V L(i, i) -VXX(~) - 0

g(R) - vg(R) -0 ('

aT MR - vg(R) ) = 0

V L(R,a) - 0x.
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(I - YV xxL(R,))VxL(X,a) 0

"g(i) - yVg(R)VxL(R,) < 0
aT (4')

> 0

In the next result we establish, under appropriate assumptions, the

local concavity of e(x,u,y) in both the variables x and u.

Theorem 2 (Negative semidefiniteness and definiteness of v e(x'u,7))

Let (R,5) be a KKT point of (1), let f and g be twice contin-

uously differentiable at R and let VxxL(X,6) be positive definite

with minimum eigenvalue p > 0. Then for y >, (ii) is a stationary

point of (4) and the Hessian V26(x,u,y) with respect to (x,u) is negative

semidefinite. If in addition y >.l and Vg(R) has linearly independentp
rows, then V28(i5,,y) is negative definite and hence (),u) is a strict

local maximum of (4).

Proof

By Theorem1, ( , )satisfies the KKT conditions (4') for

problem (4). We have from (3) when f and g are differentiable at x

that

(I -(YV xxL(xgu))VxL(x'ui

ve(x,u,y) = L (5)
Lg(x) - yVg(X)V xL(X,U)

Recalling that Vx L(R,) = 0 we have that

_ m m FII m i " r : , -' ' ,, x
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v~eiy [Vg(i)(I- yVXXL(R,5)) -Yvg(R)vg(R) Tj 6

Define

C:= V XL(R,;) and A:= Vg(i) (7)

then

V e(,~y) = I[c[
LA(I--yC) -YAATj L A

and for y - we have that

*(XT u T)v2e(iGy)(x) = xTCx + 2xTu _ yIICx+ATu 112

--T x +2x(Cx+A Tu) _ yI11Cx+AT u12

<_11x12 Tul T12

x ~(xI.fCx+ATu 11)2 _ (y - )ICx+ATuII2

Hence V 2e(i,5,y) is positive semidefinite for 1, If (x) # 0 then

we consider two cases:

Case I: Cx + ATu # 0. For this case it follows from y > . that
( x T UT) V O~ m y x x) < 0rT2
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Case II: Cx + ATu 0 and () ' 0. For this case we have that x 0 0,

else uTA = 0, u 0 0, which contradicts the assumption that the rows of

A are linearly independent. Hence

(xT u T)V2e(iuXy)(X) = -xTcx < 0

where the last inequality follows from the assumption that C is

positive definite.

Thus in either case (xT uT)v2e(R,5,y)(x) < 0 for (x,u) 0 0 and

V 2e( ,uy) is negative definite for y > I and (i,5) is a strict localp

maximum of (4) [6,13]. 0

The assumption in Theorem 2 that Vg(R) has full row rank is

restrictive, but apparently it is the best we can do if we require that

V28(x,u,y) be negative definite. A natural relaxation is to merely ask

for conditions that ensure that (R,5) is a strict local maximum of (4).

It turns out that such a relaxation can be reflected in replacing the

* linear independence of the rows of Vg(R) by the less stringent require-

ment of the linear independence of the gradients of the active constraints

only as follows.

Theorem 3 (Strict local maximum of 6(x,u,y))

The last sentence of Theorem 2 can be replaced by the following: If

in addition y > , and Vgi(R) are linearly independent for icJ where

J a {iJgl(i)-O, l=l,.,.,m1 (8)

then ) is a strict local maximum of (4).

4 , - I iA
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Proof

Let A, Vg3(R). -From the proof of Theorem 2, by replacing A by

A3  ehv ht 2 wh1
Aj9 e hve hatV 3  (i,5,y) is negative definite for y > = hr

A[(I-!C) (IyAaj A ] 0 [CA C i

We establishi now that (RZ is a strict local maximum by (4) by

establishing the second order sufficient optimality condition (6,13].

Note from (5) that V e(x,u~y) = g(x), and since the optimal multiplieru
associated with the nonnegativity constraint u > 0 is -V e(iI5Py)V

U

hence the second order sufficient optimality condition for (4) is then

k. x

0 (x)= uEO (xT uT uT uT)V2e(i,5.y) xE < 0 (10)u UG!>O ~ E UG H

where

E - {ilai-0, gj(i)<0}

H {iJ5 WO, g1()=01

Since J =Gu H it follows that the second order condition (10) can be

rewritten as

0 Ua (~0] (XT u T)V238(i,a,y) (x)< 0 (1
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1

Condition (11) is automatically satisfied for y > because we have

already established that V2 e (i,,y) is negative definite for

Y > 0

So far no convexity assumptions have been made anywhere and con-

sequently all our results are local results. We can globalize some of

our results if we assume that f is uniformly strictly convex and g

is convex on Rn. In fact we can show then that for each local solution

(x(y), u(y)) of (4), x(y) is the unique global solution of (1). In

particular we have the following.

Theorem 4 (Stationary points of (4) as global solutions of (1) and (2))

Let f and g be convex and twice continuously differentiable on

Rn, let

yTv2f(x)y > v 1Jyj12  for all x, yERn and some v > 0, (12)

and let y > I" For every stationary point (x(y), u(y)) of (4), x(y)
V

is independent of y and x(y) =, where R is the unique solution

of (1).

Proof

For x, y in Rn and ueRm , u >0 we have that

yTVxxL(XU)y > yV2f(x)y > v1jy1i 2  (13)

Hence V L(x,u) is positive definite for all u > 0 and its smallest

xx

elgenvalue p(x,u) satisfies the inequality p(x,u) ! v. By Theorem l(b)

every stationary point (x(y), u(y)) satisfies the KKT conditions (W) of

"= -S
!

•- o • -, . , . -- Sr.
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(1). Since f is strictly convex and g is convex, x(y) must equal

the unique solution R of (1) and (R,u(y)) must solve (2) £151. 0

We note that problem (4) can be used directly to construct an

algorithm for solving the original problem. For example we can easily

prescribe a Levitin-Poljak gradient projection algorithm [14] or a

superlinearly convergent quasi-Newton algorithm [10,7,9,11,21]. The key

observation to make here is that the projection operation here Is an

extremely simple one, namely projection on Rn xRm. We give below the

simplest gradient projection algorithm for solving (4) and its convergence

to a KKT point of (1).

Algorithm 1 (Gradient projection algorithm for (4))

0 0 n m i
Choose y > 0 and any (xO,uO)eRn xR4 . Having (x ,u ) compute

(x1+l ul+l) as follows:

Direction choice: p1 = (I.YVxxL(x',u'))VxL(x
1 ,u1) i

qi a (ut +glxti)Yvg(xti)VXxXtuti))+. ut i

Stepsize choice: (xl+l,u + ) = (x+Xl p ,ui+X)qI)

iI
where i is chosen such that

i i i i i I 1
3
1 )q

e(x +X p ,u +X qy)= max{e(x +Xp u q, )Iu +Xq 0}Xr
where e is defined by (3).

By standard convergence results [14] and by Theorem 1 we have.

Theorem 5 (Convergence of Algorithm 1)

Let f and g be thrice differentiable on Rn. Each accumulation point

, of the sequence {(x ,u )} generated by the gradient projection Algo-

rithm 1, such that is not an elgenvalue of V xL(i,), is a KKT point of (1).
Y xx
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3. The Quadratic Programing Problem

In this section we specialize our results to the quadratic programing

problem and obtain some sharper results. However the principal purpose of

this section is to describe an SOR method for solving the quadratic program-

ming problem which does not require the inversion of the matrix defining the

quadratic term [17]. This should substantially widen the applicability of

SOR methods to mathematical programing problems which have hitherto been

limited principally to the minimization of quadratic functions on the nonnega-

tive orthant [16,17,18]. The principal advantages of SOR methods are their

ability to handle extremely large problems and to preserve sparsity.

We shall consider here the quadratic program

minimize lxTCx + dTx subject to Ax < b (14)xeR n

where C is an nxn symmetric matrix, A is an mxn matrix, d is in

R and b is in Rm. The dual to this problem obtained from (2) is

maximize .xTCx +dTx+uT(Ax-b) subject to Cx+d+ATu=o, u>O (15).'4 (x ' u )cRnl m -

We note in passing that the standard quadratic programming dual [5,15]

obtained by substituting from the equality constraint into the objective

function of (15)

maximize -1xTCx -bTu subject to Cx+ d+ ATu.O, u> 0 (16)

(x,u)eRn+m T

cannot be used to obtain a differentiable exact penalty function because

the optimal multiplier associated with the equality constraint in (15)

is zero when C is nonsingular, whereas it is equal to x in (16) also

when C is nonsingular (15].

i !i - - ( : " ' : " "2 " ";- . .. . . ..'
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The penalty function associated with (15) is

-(x-u-Y) := I xTcx + dT x + UT(Ax-b) -. IIjCx+ATu+dl1' (17)

and the associated penalty problem is

maximit (x,u ,y) (18)
(x,u)ERn

u>_O
U =

We have as an immediate consequence of Theorems 2 and 3 the following.

Theorem 6 (Concavity and strict concavity of O(x,u,y))

Let C be positive definite with minimum eigenvalue > 0. Then

fo y p, V 2(x,u,y) is negative semidefinite and hence *(x,uy)

is a concave function of (x,u) on Rn"n. If in addition y > I and

A has linearly independent rows, then V2*(x,u,y) is negative definite

and hence O(x,u,y) is a strictly concave function on Rnl. if

Iy > T and only Ai, ieJ are linearly independent where

J = {iJAii=bi, i=l ,.,.,m

and (i,5) is a KKT point of (1), then (R,a) is a strict global

'. maximum solution of (18).

Corollary 1 ,Let {xIAx<b} be nonempty, let C be positive definite
:I. 1

with least elgenvalue 5 >0 . Then for each y I , problem (18) is

a concave quadratic maximization problem which possesses a solution

(x(y), u(y)) with x(y) independent of y and x(y) - where R is

the unique global solution of (14).
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With the help of the SOR scheme of [16] we can solve iteratively the

quadratic program (18) in R xR+ and thereby obtain a solution to (14).

It will be convenient for that purpose to have the following expressions

at hand

F T 1I (I-yC)(Cx+A u+d)
4 v*(x,u,y) = j(19)

LAx - b -yA(Cx+A Tu+d)J

"-i FC (I-yC ) ( I-yC)AT-

V 2 (x,u,y) -I | (20)
LA(I-yC) -yAA]

An SOR method for solving the quadratic program (18) with relaxation

factor we(O,2) can be given as follows then

i+l i + " i T V x. I .... '^xj- 1
x ' .... Xnu Y )

(21)

S J (XX (XI ' + Y))1 +1J1))

j=19 .... ,n

We spell out our SOR scheme in detail now.

Algorithm 2 (SOR scheme for (18))

Choose uw(0,2), y > max -4 I , 0 an elgenvalue of C
)!jI Y

and (xO,uO) eRn m Having (x1  c 1+1
(x, R xR+. avn (x,ui) compute (x +,uI+ I) *as follows:

I IIiF
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.4 1+1 + P C.LXL + I C. x+A A u+d)x

CjJ-yi Cjl -

Set to 1 if Cj=O U For J>1 :only
j-l,.... ,n

+= .- b,-yAA (CxT) (AT). £u +d)))+

11 -YIIAji x I + 1 -

For J>l only
Jul. .... ,m

Remark 1

The only implicit assumption in Algorithm 2 is that Aj 0 0,

J=l ..... ,m. This assumption imposes no restrictions whatsoever, since

all constraints Ajx < b. of (14) for which Ai = 0 are either

inconsistent (b < 0) or else can be discarded.

Remark 2

Note that in Algorithm 2 only linear arrays are needed in distinc-

tion from rectangular arrays. That is, we need to access the rows and

columns of C and A one at a time. Thus, if the problem is of

enormous size and very sparse, then only the nonzero elements need be

stored, and this sparsity unlike pivotal algorithms is never lost.

We can now use the convergence theorems of [16] and the theorems

of this paper to obtain the following convergence result for the SOR

Algorithm 2.

Theorem 7 (Monotonicity and convergence of the SOR Algorithm 2)

For the sequence {(x ,u )}, 1=1,2,..., generated by Algorithm 2

*(x +l,u l1,y) Z (x ,u ,y), 1=0,, .... (22)
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and each accumulation point (i,5) of the sequence {(x ,u )} is a KKT

point of the original quadratic program (14). If in addition C is

positive semidefinite then i is a global solution of (14).

Proof

Inequality (22) follows from (9) of [16] and by Theorem 2.1 of [16]

(, i) is a stationary point of (17). By Theorem 1, (i,;) is a KKT

point of (14). When C is positive semidefinite i is a global minimum

solution of (14) by the sufficiency of the KKT conditions [15]. 0

We note that Theorem 7 does not ensure the existence of an

accumulation (R,;) of the sequence {(x ,u )} of Algorithm 2. To

ensure that at least one accumulation point exists we need to impose

some sort of qualification similar to that of Theorem 2.2 of [16] which
g i

will ensure the boundedness of the iterates {(x ,u )1 of Algorithm 2.

In particular we have the following.

Theorem 8 (Boundedness of the iterates of the SOR Algorithm 2)

Let C be positive definite with minimum eigenvalue p > 0, let

A have linearly Independent columns, let A satisfy the constraint

qualification AR < b and let y > 1 Then the sequenceP

{(x1 ,ui)1, i=1,2 ..... , generated by the SOR Algorithm 2 is bounded

and lim xt = ' , where i is the unique global solution of (14).
-- i-MD

Proof

By Theorem 6 the constant Hessian V2o(x,u,y) defined by (20) is

negative semidefinite. We shall assume that the.sequence {(x ,ul)}

4

---* 1i I I I I II '. ... ..
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generated by Algorithm 2 is unbounded and exhibit a contradiction. With-

out loss of generality suppose that jf(x ,u )Il 0 and {llx ,u i}.

Define z:= (4), M:. V20(x,u,y) and q:= :M (IYc)d . Then
q2 -b-yAd

O(x,u,Y) - O(z,y) -- zTMz + qrz

It follows from (22) and Algorithm 2 for i1,2, .... ,that u > 0 and

Szi III 1Z 2l 1 ziT12 1 qT z I

By the Bolzano-Weierstrass Theorem we get that has an

n" I -T-
accumulation point 5 on the unit sphere in Rn satisfying 0 ;S Fy MY
and w = ( i) with eRn and eRm . Since M is negative semidefinite

-

it follows that yTMy = 0 and hence M, = 0. Since we also have that

:. (zO0 y) < (z i Y) 1zT~zi  Tzi T'rz

Ilz=ill - Ili ll T 11 (z- I 1 -  111 1 #zli 1

it follows that 0 qT. We thus have

0, qT >O, 0 0 - (1),. 0 (23)

or equivalently

i-
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IT- T-.1 +(2
A(I-yC) -yAAT 1 2u > 0

From the generalized Gordan theorem of the alternative (19] (24) is

equivalent to either

the rows of [C(I-yC) (I-yC)AT] are linearly dependent (25)

or

C(I-yC)v + (I-yC)ATw = (I-yC)d

A(I-yC)v - yAATw > -b -yAd (26)

has no solution (v,w) in Rn7

Because y > it follows that I - yC is negative definite and that

C(I-yC) is nonsingular which contradicts (25). We will show now that

(26) also leads to a contradiction. By hypothesis we have that AC < b.

Since the columns of A are linearly independent, there exists a w

satisfying

ATw = d + CR

and hence

A = AC-l(ATw-d) < b

that is

AC'd - ACl'ATw + b > 0

or

AC'l((I-yC)d - (I-yC)ATw) - yAATw > - b - yAd

_]I
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By defining

v - (-yCV'IC'l((I-yC)d- (I-yC)ATw)

we get

C(I-yC)v+ (I-yC)ATw = (I-yC)d

A(I-yC)v - YAATw > - b - yAd

A These last two relations contradict (26). Consequently the sequence

ii
{(x ,u )) is bounded and must have at least one accumulation point. For

each accumulation point (9,B), 9 must equal the unique solution i of

(14). Since {xI } is also bounded it must converge to R [2]. 0

At this time we do not have any computational experience for the SOR

Algorithm 2 for solving the general quadratic programming problem (14).

However, for the case when matrix C = eI where e is a positive number

and y - the penalty problem (18) becomes
C

Maximize - TIATu+d 2- ebTu (27)
ucRm

This is precisely the dual of the quadratic program perturbation of [17]

associated with the linear program

Minimize dTx subject to Ax < b (28)
xERn

and which was solved quite successfully by the SOR method proposed here.

Thus for at least this special class of quadratic programs computational

experience is very encouraging. It is hoped that this experience will

carry over to the more general case.

4 , V
• _-
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